Electronic Absorption Spectra of Praseodymium in Molten Chlorides

Toshiyuki Fujii^a, Akihiro Uehara^a, Takayuki Nagai^{a,b}, and Hajimu Yamana^a

^a Research Reactor Institute, Kyoto University 2-1010, Asashiro Nishi, Kumatori, Sennan, Osaka 590-0494, Japan

^b Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai, Ibaraki 319-1194, Japan

Reprint requests to T. F.; E-mail: tosiyuki@HL.rri.kyoto-u.ac.jp

Z. Naturforsch. **62a**, 733 – 738 (2007); received June 13, 2007

Presented at the EUCHEM Conference on Molten Salts and Ionic Liquids, Hammamet, Tunisia, September 16 – 22, 2006.

Electronic absorption spectra of trivalent praseodymium in various alkali chloride melts were precisely measured. The oscillator strength of the hypersensitive transition, ${}^3F_2 \leftarrow {}^3H_4$, showed a clear decrease with increasing temperature. This temperature dependence was the inverse of reported cases for other trivalent lanthanoides. The Judd-Ofelt parameter was analysed, and the calculated oscillator strength showed quite good agreement with the experimentally obtained oscillator strength. However, the Ω_2 parameter, which is sensitive to the ligand environment change, showed a clear decrease with increasing temperature and negative values at high temperature. We found that the ${}^3P_0 \leftarrow {}^3H_4$ transition and its shoulder peak are quite sensitive to the coordination circumstance change of the $[PrCl_6]^{3-}$ complex in molten chlorides. These intensities could be correlated with the octahedral symmetry of $[PrCl_6]^{3-}$.

Key words: Molten Salt; Praseodymium; Electronic Absorption Spectrometry; Judd-Ofelt Parameter Analysis.